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Entropy change 8S is defined by the "detailed imbalance" of a stochastic 
process describing irreversible evolution. The detailed imbalance for a 
pair of configurations i and j is log(pttfj/pj%O, where p t and p l  t a r e  the 
probabilities at time t and f~j and f~ are the transition probabilities. This 
quantity, averaged for all i, j transitions, is equated to 3S. The definition 
facilitates the description of entropy changes for a nonisolated system 
interacting with its surroundings, 3S decomposing into 8Ssyst-  8Se~t. 
The former, related to log(p//pj~), is the change in the state entropy of the 
system; the latter, related to log(fj/f/t), is the change due to surroundings. 
Both can be calculated for a stochastic process without recourse to thermo- 
dynamic variables. As an example, 8S is calculated for a nonlinear diffusion 
process and is shown to decrease monotonically with the time, conforming 
with "minimum entropy production." Relationship to other definitions 
is discussed. 

KEY WORDS: Stochastic process; detailed balance; irreversible change; 
entropy; nonlinear diffusion. 

1. I N T R O D U C T I O N  

Take  a macroscop ic  system to which belongs a set o f  conf igurat ions  (micro-  
states) i. The stat is t ical  s tudy o f  the  system at equi l ib r ium is with the  help 
o f  t ime- independen t  conf igura t ional  p robabi l i t i es  p~. The evolu t ion  o f  
p robabi l i t i es  wi th  the t ime is convenient ly  descr ibed by  a s tochast ic  process  
obeying  the mas te r  equa t ion ;  it  is reasonable  therefore  to employ  the la t te r  
for  a s tat is t ical  s tudy o f  a macroscop ic  system no t  at  equi l ibr ium.  W h a t  
quan t i ty  o f  the  s tochast ic  process  represents  the i r reversible  en t ropy  change,  
8S > 0?  The  c o m m o n  choice ~1) is based  on G i b b s  (coarse-grained)  defini- 
t ion  o f  en t ropy.  <2> Recent  l i te ra ture  discusses the  relat ive mer i ts  of  this  and  
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of alternative definitions. (3-s) Moreover, the calculation of the Gibbs entropy 
change is for a stochastic process describing an isolated total system. How- 
ever, the practical description of the time evolution is with the help of a 
stochastic process which represents the effect of surroundings (e.g., heat 
bath) on a nonisolated system. Such is the case with the computer Monte 
Carlo method (6-8) and with theoretical studies based on Glauber's model. (9) 

In what follows a different approach is therefore proposed. The irrevers- 
ible entropy change is defined by a "detailed (im)balance" for pairs of con- 
figurations between which the stochastic transitions take place. This definition �9 
(i) reproduces 8S/> 0 and (ii) very conveniently decomposes into two parts, 
8Ssyst and - 8Sex~. The first, 8Ssyst, is the entropy change for the nonisolated 
system; it is equal to a change of the state function - l o g  p associated with 
the probability distribution. The second, 8Soxt, is the entropy change due 
to the surroundings, as represented by the stochastic process transition 
probabilities. Thus 8S~xt is equal to 8Q/T for a system exchanging heat 8Q 
with a bath at T. However, for a stochastic process representing an effect of 
surroundings which is difficult to define thermodynamically, one can still 
calculate - 8Soxt with no difficulty from transition probabilities, as described 
here and in previous articles. (1~ Finally, the reason for relating irreversi- 
bility to the detailed imbalance seems to be intuitively more meaningful 
than the reason for relating it to a coarse-grained probability. As we shall 
see, the present definition of entropy change is essentially similar to the 
change of Gibbs entropy, but, in view of  (ii) and of its meaningfulness, it 
seems to be, so to speak, tailored for calculations with the help of  a stochastic 
process. 

2. T H E O R Y  

Let the macroscopic system be represented by an ensemble of discrete 
configurations, p t being the probability of configuration i at time t. The 
evolution of the ensemble, spontaneous or impressed by the surroundings, 
is described by a Markovian stochastic process. The process effects transi- 
tions of the configurations one into another, varying one degree of freedom 
at a step. Thus a transition corresponds to a flip of one spin for the Ising 
lattice (7) or to a displacement of one molecule for a model fluid. (6) The pro- 
cess is assumed to be irreducible and aperiodic, viz. to exhibit ergodic con- 
vergence. (6,7) The unit time per step is ~-, that is, step s corresponds to physical 
time t = sz. For  pairs of communicating configurations i and j, f~s and fj~ 
are the forward and reverse transition probabilities. 

We define the "detailed imbalance" for i and j at time t as follows: 

X,j ~ = log(p ,~ /p j~ , )  (1) 
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The average of this quantity over all i ---~j transitions during the time interval 
from s to s + 1 is 

= ~ ,  ~ p , ~ j X ,  j ~ (2) 
i J 

where 

and 

~ f ~ j  = 1 (including i = j )  (3) 
J 

~ p t =  1 (4) 

Our proposal is that X t represents the corresponding rate of change of the 
thermodynamic entropy. Thus (k being the Boltzmann constant) 

~Sl~t = kXt/-~ (5) 

To begin with, we note that the forward i---~j transitions, of frequency 
p ~ j ,  contribute Xty t, while the reverse j - +  i transitions, of frequency pj~, ,  
contribute 

Xj,  ~ = log(pj~-dp,~s) = - X,j' (6) 

Hence 

But in view of 

X t = -~ ~ ( p , ~ ,  - pj~.,)  l o g ( p , ~ j / p j ~ , )  (7) 

(a - b ) log (a /b )  >f 0 for a > 0 and b > 0 (8) 

we conclude at once that X t/> 0. The limitation here is to initial distribu- 
tions such that for no configuration is p O equal to precisely zero, even 
though for all practical purposes some p O are effectively null. The form of 
Eq. (7) implies that X t = 0 if, and only if, all communicating i and j obey 
the equation of detailed balance, 

p,~j  = p ~ ,  (9) 

However, for a Markov process that exhibits convergence toward a time- 
independent, viz. equilibrium, probability distribution, Eq. (9) constitutes 
a sufficient condition showing attainment of this equilibrium. (6n> We con- 
clude therefore 

X t > 0 for nonequilibrium 
(10) 

X t = 0 at equilibrium 
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So far our elected quantity very nicely agrees with the second law. But 
does it really correspond to 8S as calculated from statistical thermodynamics ? 
For that purpose kX  t is decomposed as follows [Eqs. (1), (2), and (5)]: 

kX~= ~(8S/8t) = ~S~yst- 8S~t (11) 

where 

and 

8S~ys~ = k ~, ~, p,~, log(p//pj t) (12) 
Y 

- SSo~t = k ~ ~ p , ~ ,  log(f~,/fj,) (13) 
t i 

To demonstrate that our 8S~yst agrees with the usual expression of statistical 
mechanics, namely 

8S*y~t = - k ~ 8(p,' log p,!) = - k 8(log p) (14) 
t 

we note that 

~ p , Z , = p ~  +~ (15) 

With the help of Eqs. (3) and (15), we rewrite Eq. (12) as follows: 

8Ss,st = k ~ ~ pi~,(log p,~ - log p,t) 
i J 

= k ~p~t  logp,t - k ~p~+~logp/ 
J 

= - k  ~ (Sp, t) logp, ~ (16) 
| 

This is still different from Eq. (14), since logp~ t is not varied 

8Ssy~t - 8S*yst = k ~ p t  8(logp/) (17) 

However, for a sufficiently small variation per step, the normalization 
equation (4) leads to 

~ p t  ~ ( l o g p t ) ~  ~pit(Spt /pt)= ~ ~p,~ = 0 (18) 

We remark that the use of a sufficiently small (infinitesimal) variation ~pt 
in the calculation of ~S appears to be accepted without question (see Ref. 1, 
for example). Still, we would like to deal with a stochastic process the steps 
of which correspond to some physically meaningful units of a real evolu- 
tionary process. In that case the presumed smallness of 8p~ t needs justifica- 
tion. 
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On the basis of Eqs. (17) and (18) we conclude that the present definition 
of Ssy~t is equivalent to the conventional definition 

3Ssyst = ~S*yst = - k  3(logp) (19) 

We turn to an evaluation of -3Sext,  for the case when the effect of  
surroundings can be described by thermodynamic variables. Suppose the system 
evolves in contact with a reservoir at temperature T. The stochastic process 
describing the interaction with the reservoir has to reproduce the tendency 
of the system to ultimately come to equilibrium at T; notably p~ | have to 
obey the canonical distribution for that temperature (see Ref. 7, for example). 
Since the equilibrium pflO obey detailed balance [Eq. (9)], we have 

fj/fj~ = pj=/p~ = e x p ( -  AH~j/kT) (20) 

where AH,~ is the change of enthalpy associated with the transition from an 
i to j configuration (viz., change of internal energy plus external work if 
any is required). It follows [Eqs. (13) and (20)] that 

- 3S.xt = k log(f~j/fj,)t = - (AH,,)t/T = - 3Q/T (21) 

where 3Q is the macroscopic heat given to the system by the surroundings 
during the time from s to s + 1. Clearly Eq. (21) is in agreement with 
thermodynamics. Summing up [Eqs. (1 i), (19), and (21)], we have 

k X '  = k log(p,~j /p~,)  = $S~y~t - 3S~xt = - k  3(logp) - 3Q/T (22) 

3. A S IMPLE EXAMPLE 

Consider diffusion in a fluid consisting of two types of particles, A and 
B, which are noninteracting and similar in their kinetic properties. The 
diffusional exchange is between a system, assumed to remain homogeneous 
throughout the process, and an external reservoir. The concentrations in the 
system at time t are 

ca t and cB*= 1 -  cA t (23) 

Those in the reservoir are 

c~ xt and c~Xt= 1 -  c~ xt (24) 

The A ~- B exchange of  the system with the reservoir is described by a sto- 
chastic process, exchanging one particle at a time, with the transition proba- 
bilities 

fAB = e~ x~ = 1 -- c~ xt and f~a = c~ xt (25) 

It follows that the net flux of A into the system is (per unit volume and time) 

J , ,  = ( c d f B A  - -  c s  = ( c d c " 2  '~ - -  c s  = (cY, "~ - -  c.?)/~- (26) 
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where r is the unit time per step. Equation (26) accords of course with Fick's 
law. Take an exchange B-+  A, giving rise to a transition from an i ( B )  to 
a j ( A )  configuration of the system. In view of Eq. (25), 

f j / f j ,  = C~AXt/(1 -- C~a xt) (27) 

Furthermore, for a fu id  of N ideal particles 

Pi ']P/  = (CA*)NC~(Cst)Nc~/(CAt) Nc~ + I(CBt)Nc~- X = (1 - -  CAt)/Ca t (28) 

Using Eqs. (27) and (28), we can calculate the imbalance [Eq. (1)] 
associated with one B ~ A transition. To find the average imbalance, hence 
8S [Eq. (5)], this quantity has to be multiplied by the net sum of these and 
of the reverse transitions, viz. by Ja [Eq. (26)]. Thus (per unit volume and 
time) 

3 S / 3 t  = k ~ r - z X  ' = k J a  l o g ( p , ~ j / p j ~ , )  

= k . r -Z(c~  xt _ ca t) log[c~Xt(1 - ca')/cat(1 - c~Xt)] 
(29) 

We note that 3 S / 3 t  > 0, becoming zero when ca t = c] xt at equilibrium. The 
second derivative is of interest: 

'2S _k~._~ ~ [log c ~ t ( 1 -  ca ~) c~Xt - Ca '] 
8 7  = : + J (30) 

Since ~cAt/~t = JA (master equation) and in view of Eq. (26), the sign of 
both the logarithmic term and of c~ xt - ca t follows that of ~cat/~t. We con- 
clude therefore 

~2S/3t2  <~ 0 (31) 

This result agrees with the so-called principle of minimum entropy produc- 
tion. m-~a) It is worth stressing in this context that we have considered here 
a nonl inear  diffusion process. This is shown easily by defining a chemical 
potential of our ideal fluid, (~4) 

(iz] ~t --  i z A ~  = log [c3~t/(1 - c~t~t)] 
(32) 

(tLAt - iZA~ = log [carl(1 - Cit)] 

(Remark: this definition is no t  required for our calculation of ~S.) Then 
Eq. (29) becomes 

T 8 S / 8 t  = --JA(t~A ~ -- t~ ~t) = --JA At~a (33) 

which resembles the generally valid expression for the dissipation function 
as the product of fluxes times the gradients of the conjugate thermodynamic 
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potentials (here AFA depends on the time). For a linear process one would  
require 

(JA)llne~, = const • (--AFA) (34) 

However, our Ja is of the form [Eq. (26)] 

Ja = const • (-AcA); AcA = ca ~ -- c~ xt (35) 

Equations (34) and (35) agree with one another only near equilibrium, 
whence Aca --~ 3cA and 

AF~ --* 3FA = 3 log [CA/(I -- ca)] ~ const x 3cA (36) 

4. DISCUSSION 

The classical calculation of entropy changes for a stochastic process 
is with the help of the Gibbs entropy for a total isolated system, 

Sa = - ~ p, log(p,/G,) (37) 

Here the p~ are the coarse.-grained probabilities of cells in the "a-space" 
(defining intervals of some macroscopic variable), and the G~ are the regions 
of the P-space belonging to such cells. <2) With the help of the master equation 
one derives <1) from Eq. (37) an expression resembling our Eq. (7), 

3Sa = �89 ~ ~ (p , f j  - p,fj,)[log(pdp,) - log(G,/Gs) ] (38) 
J 

where 

G,/Gj = p,~~ ~ = f~'dfJ (39) 

The total system described by Eqs. (37)-(39) treats our nonisolated sys- 
tem simultaneously with its surroundings, as a subsystem plus heat bath. 
The p~ of the total system belongs therefore to a cell defined by a given sub- 
system configuration (i), its value (degeneracy) being proportional to the 
associated number of bath configurations. Noting that constant total energy 
implies an effectively constant bath temperature T, we write 

pjOO/p ~ = exp( -  A H J k T )  (40) 

where AH~j constitutes the enthalpy change for the transition i--->j. Equa- 
tions (39) and (40) show the equality of the f j  discussed at present to ours 
[Eq. (20)]. It appears therefore that the definition of 3Sa in Eqs. (38)-(39) 
and our definition of 3S [see Eq. (7)] are equivalent. However, note the 
following: 

1. The argument just given, needed to apply Eqs. (38)-(39) to the case 
of a nonisolated system interacting with surroundings, seems to be rather 
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circumvential. Yet the nonisolated case corresponds to many actual sto- 
chastic studies of the time evolution (both theoretical<9,15-17) and by computer 
simulation~6-8~), as well as to the actual experimental conditions. ~5) 

2. In our treatment the isolation constitutes a particular case. Thus, all 
configurations for an isolated system at equilibrium are equally probable 
(microcanonical ensemble), so that [Eq. (9)] 

f j]f j ,  = pj~]p~O = 1 (41) 

whence [Eqs. (11)-(13)] 

8S = 8S~y~t; 8Sext - 0 (42) 

Note that 8S i> 0 still holds because of Eqs. (7) and (8). 
3. The relevance of our detailed imbalance to irreversibility, 3S/> 0, 

seems intuitively clear~ fi[fs~ represents the effect of the surroundings on 
the system, constituting a stochastic " inpu t"  or "cause" ;  p t/pt represents 
the ensuing change in the system's probability, constituting a stochastic 
"ou tpu t "  or "effect";  the average imbalance between the two provides a 
measure of irreversibility. In contrast, the relevance of coarse graining to 
irreversibility is less transparent. For example, a commonly expressed 
opinion is that So is inadequate since it depends on the (seemingly) arbitrary 
manner in which the cell volumes G~ are defined. Discussion of the stochastic 
process shows the opposite to be true: The definition of G~ is tantamount to 
that of the transition probabilities [Eq. (39)] which determine the irreversible 
evolution. 

4. The present definition of 8 S =  8S~yst- 8Se,,t [Eqs. (11)-(13)] 
stresses the ease of its calculation for a model process with the help of 
computer simulation. Thus -SSext = k log(fj/fj~) is calculated at once 
from the transition probabilities of an actual execution of the process. It 
is important to note that this calculation is valid even when the interaction 
with the surroundings cannot be expressed with the help of well-defined 
thermodynamic variables. That aspect has been described in previous 
articles (1~ (these compute the "discrimination" of a stochastic process, 
which is equal to - 8Sext; however, the definition of 8Ssy~t there is somewhat 
different, which makes the proof of 8S i> 0 difficult). The other term, 
8S~y~t = - k  3(log p), is less easy to calculate since the smallness of p~ for 
a many-particle system precludes direct measurement. Still, several methods 
enabling an indirect measurement of 3(log p) have been described318-21~ The 
model of diffusion which we have considered shows that for highly idealized 
systems the calculation can also be carried out analytically, without recourse 
to computer simulation (but very possibly such results can be always ob- 
tained from classical irreversible thermodynamics). 
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Summing up points 1-4, both Gibbs' and the present definition con- 

tain an extra term, in addition to 8Ssyst -- - k  ~(log p), permitting one to 
show ~S >/0. The origin of the extra term is different in the two definitions. 
In the former it is related to the coarse-grained cell colume (G~), implying 
the need to measure p~ of a total system with reference to the ultimate proba- 
bility distribution (G~ oc p O~). In the latter it is due to a consideration of the 
present effect of the surroundings on a nonisolated system, -~S ex t - -  

log(f~j/fj~). In a way we try to implement what Blatt (5~ proposed some time 
ago: "Once it is admitted that the thermal motion of the wall is essential 
for the attainment of true equilibrium then this motion should be taken into 
account as such, not disguised as a coarse grained measuring process." 
Still, despite this difference, the two descriptions seem to be mathematically 
equivalent, at least insofar as f~J/fs~ can be represented with the help of 
thermodynamic variables. In contradistinction, Shannon's entropy (22~ (used 
by Jaynes, (23~ for example), 

Ss = - k ~ p, log p, (43) 

contains no extra term and does not therefore permit one to show ~S >/ 0. 
Other recent discussions of irreversible entropy (24,25~ are based on 
Kullback's(26~ definition of a probability distribution p~ relative to a prior 
distribution p O. Thus 

SK = -- k ~ P, log(P,/p, ~ (44) 

permitting one to show 8S/> 0. Despite a superficial resemblance of SK to 
the Gibbs (or present) entropy, the difference lies in the interpretation of 
the reference probability p0. The fact that p O relates to a prior probability 
makes SK nonadditive for consecutive steps (2~ and the extra term is un- 
related to the transition probabilities f~j (unless p O is interpreted as referring 
invariantly to an original equilibrium state, to which the system reverts 
ultimately). 

Our last comment concerns the purpose which is served by the attempts 
to define and to calculate an irreversible entropy change, especially when 
not expressible by thermodynamic variables. It would be gratifying to find 
that the value of 8S provides some absolute scale enabling one to measure 
the degree of irreversibility for different processes. Unfortunately, it is not 
clear whether and how such a measure can be employed usefully. In con- 
solation we note other uses of studying 8S: (a) Since 8Se~t is easily calculated 
while 3S~yst is not (see comment 4 above), one can vary the irreversibility of 
a. model process in order to find the latter from the former, using 8Se~ 
3S~st, 3S ~ 0. (~~ (b) A calculation showing 3S < 0 indicates that a par- 
ticular process describes a fluctuation away from equilibrium. Alternatively, 
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3S' < 0 indicates a process driven with the help of another, coupled process, 
for which 8S" >/ - 3 S ' .  (c) A theoretical expression for 3S helps to identify 
the extensive fluxes and the conjugated intensive variables for a stochastic 
process, viz. generalized, possibly nonthermodynamic forces. That in turn 
might help the search for a minimum principle governing irreversible evolu- 
tion311-13) 
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